metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhi-Wei Xu,^a Yun-Long Fu,^a Song-Qing Teng^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.010 Å Disorder in solvent or counterion R factor = 0.066 wR factor = 0.177 Data-to-parameter ratio = 12.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography

All rights reserved

Pentakis(ethane-1,2-diammonium) aquapentasulfato- $\kappa^3 O; \kappa^4 O, O'$ -zirconate(IV) diaquatetrasulfato- $\kappa^2 O; \kappa^4 O, O'$ -zirconate(IV)

The two independent Zr atoms in the asymmetric unit of the title structure, $(C_2H_{10}N_2)_5[Zr(SO_4)_5(H_2O)][Zr(SO_4)_4(H_2O)_2]$, are both eight-coordinate. In the docedahedral aquapenta-sulfatozirconate(IV) hexaanion, three of the sulfate groups are monodentate, whereas the other two chelate to the metal atom. In the square-antiprismatic diaquatetrasulfatozirconate(IV) tetraanion, two of the sulfate groups are monodentate and two are bidentate. Two of the five 1,2-ethanediammonium cations lie about crystallographic centres of inversion. The cations and anions are linked into a three-dimensional network architecture by hydrogen bonds.

Comment

A recent study reports the structure of propane-1,3-diammonium triaquatris(sulfato)zirconate(IV), in which a Zr atom is chelated by two of the three sulfate groups. The Zr atom is in a square-antiprismatic coordination geometry (Xu *et al.*, 2006). Using propane-1,3-diamine instead of ethylenediamine and following a similar synthetic procedure yields the title compound, (I), which has a different composition.

The asymmetric unit of (I) and symmetry-complete cations are shown in Fig. 1. There are five cations in the formula unit; the ten positive charges are balanced by a $[Zr(SO_4)_5(H_2O)]^{6-}$ hexaanion and a $[Zr(SO_4)_4(H_2O)_2]^{4-}$ tetraanion. In the hexaanion, two of the sulfate groups are chelating and the other three are monodentate, and these seven O atoms, in addition to a coordinated water molecule, give rise to a dodecahedral geometry at the metal centre (Fig. 2). On the other hand, in the tetraanion, two sulfate groups are chelating and two are monodentate; the square-antiprismatic geometry is completed by two water molecules (Fig. 3). Two of the five 1,2-ethanediammonium cations lie about crystallographic centres of inversion.

The cations and anions interact through hydrogen bonds (Table 2), resulting in a three-dimensional hydrogen-bonded network structure.

Received 23 November 2006 Accepted 29 November 2006

23065 measured reflections 7733 independent reflections

 $R_{\rm int}=0.119$

 $\theta_{\rm max} = 25.0^{\circ}$

4468 reflections with $I > 2\sigma(I)$

Figure 1

The asymmtric unit of (I) and the symmetry-complete cations. Displacement ellipsoids are drawn at the 50% probability level and H atoms as spheres of arbitrary radii. Only one disorder component is shown. Unlabelled atoms in the cations containing C9 and C10 are related by the symmetry operators (1 - x, 1 - y, 2 - z) and (-x, 1 - y, 1 - z), respectively.

Figure 2

Representation of the dodecahedral geometry of Zr1 in the $[Zr(SO_4)_5(H_2O)]^{6-}$ anion.

Figure 3

Representation of the square-antiprismatic geometry of Zr2 in the $\left[Zr(SO_4)_4(H_2O)_2\right]^{4-}$ anion.

Experimental

Zironium(IV) oxydichloride octahydrate (0.322 g, 1 mmol) was dissolved in water (10 ml). Sulfuric acid (98%) (0.50 ml, 8.33 mmol) and ethylenediamine (0.06 ml, 1 mmol) were added. The clear solu-

tion was set aside for a week for the formation of colourless blockshaped crystals of (I) (in 50% yield based on Zr).

Crystal data

 $(C_2H_{10}N_2)_5[Zr(SO_4)_5(H_2O)]$ -V = 4410.0 (6) Å³ $[Zr(SO_4)_4(H_2O)_2]$ Z = 4 $D_x = 2.126 \text{ Mg m}^{-3}$ $M_r = 1411.63$ Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 14.660 (1) Å $\mu = 1.03 \text{ mm}^{-3}$ b = 16.845 (1) Å T = 293 (2) K c = 17.887 (1) Å Block, colourless $\beta = 93.298 (2)^{\circ}$ $0.09 \times 0.07 \times 0.05 \ \mathrm{mm}$

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.913, T_{\max} = 0.950$

Refinement

 Refinement on F^2 H-atom parameters constrained

 $R[F^2 > 2\sigma(F^2)] = 0.066$ $w = 1/[\sigma^2(F_o^2) + (0.0719P)^2]$
 $wR(F^2) = 0.177$ where $P = (F_o^2 + 2F_c^2)/3$

 S = 0.99 $(\Delta/\sigma)_{max} = 0.001$

 7733 reflections
 $\Delta\rho_{max} = 0.75$ e Å⁻³

 637 parameters
 $\Delta\rho_{min} = -0.76$ e Å⁻³

Table 1

Selected geometric parameters (Å, °).

8 I	(,)-	
Zr1-01	2.287 (6)	Zr2-O21	2.180 (6)
Zr1-O2	2.248 (6)	Zr2-O22	2.216 (6)
Zr1-05	2.296 (6)	Zr2-O25	2.260 (7)
Zr1-06	2.245 (6)	Zr2-O26	2.212 (7)
Zr1-09	2.096 (6)	Zr2-O29	2.094 (6)
Zr1-013	2.115 (6)	Zr2-O33	2.112 (6)
Zr1-017	2.100 (6)	Zr2-O2W	2.213 (6)
Zr1-O1W	2.235 (6)	Zr2-O3W	2.289 (6)
O1-Zr1-O2	60.5 (2)	O21-Zr2-O22	62.0 (2)
O1-Zr1-O5	124.5 (2)	O21-Zr2-O25	80.4 (2)
O1-Zr1-O6	128.3 (2)	O21-Zr2-O26	107.2 (3)
O1-Zr1-O9	82.1 (2)	O21-Zr2-O29	91.0 (3)
O1-Zr1-O13	76.9 (2)	O21-Zr2-O33	145.8 (2)
O1-Zr1-O17	148.6 (2)	O21-Zr2-O2W	132.5 (2)
O1 - Zr1 - O1W	72.3 (2)	O21-Zr2-O3W	71.7 (2)
O2-Zr1-O5	73.2 (2)	O22-Zr2-O25	117.3 (2)
O2-Zr1-O6	77.9 (2)	O22-Zr2-O26	83.0 (2)
O2-Zr1-O9	96.6 (2)	O22-Zr2-O29	85.3 (2)
O2-Zr1-O13	90.1 (2)	O22-Zr2-O33	151.6 (2)
O2-Zr1-O17	150.5 (2)	O22 - Zr2 - O2W	70.9 (2)
O2-Zr1-O1W	132.7 (2)	O22-Zr2-O3W	128.8 (2)
O5-Zr1-O6	61.4 (2)	O25-Zr2-O26	61.5 (2)
O5-Zr1-O9	74.2 (2)	O25-Zr2-O29	146.8 (2)
O5-Zr1-O13	134.4 (2)	O25-Zr2-O33	81.9 (2)
O5-Zr1-O17	79.8 (2)	O25-Zr2-O2W	129.0 (2)
O5-Zr1-O1W	145.2 (2)	O25-Zr2-O3W	72.2 (2)
O6-Zr1-O9	135.0 (2)	O26-Zr2-O29	150.3 (2)
O6-Zr1-O13	73.8 (2)	O26-Zr2-O33	89.4 (3)
O6-Zr1-O17	79.0 (2)	O26-Zr2-O2W	70.6 (2)
O6-Zr1-O1W	136.4 (2)	O26-Zr2-O3W	132.9 (2)
O9-Zr1-O13	151.1 (3)	O29-Zr2-O33	88.0 (3)
O9-Zr1-O1W	79.2 (2)	O29-Zr2-O2W	79.8 (2)
O9-Zr1-O17	87.0 (2)	O29-Zr2-O3W	74.6 (2)
O13-Zr1-O17	100.8 (2)	O33-Zr2-O2W	80.8 (2)
O13-Zr1-O1W	75.8 (2)	O33-Zr2-O3W	75.1 (2)
O17 - Zr1 - O1W	76.8 (2)	O2W-Zr2-O3W	145.2 (2)

Table	2

H	lyd	rogen-	bond	geomet	try	(A,	°).
---	-----	--------	------	--------	-----	-----	-----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
O1W-H1W1···O11 ⁱ	0.85	2.16	2.921 (9)	148
$O1W-H1W2\cdots O20$	0.85	1.90	2.678 (9)	150
$O2W - H2W1 \cdots O30$	0.84	1.92	2.708 (9)	156
$O2W - H2W2 \cdot \cdot \cdot O34$	0.85	1.83	2.630 (9)	156
O3W−H3W1···O4 ⁱⁱ	0.86	2.02	2.814 (9)	154
$O3W - H3W2 \cdot \cdot \cdot O15^{iii}$	0.86	2.00	2.715 (8)	140
$N1-H1A\cdots O4$	0.85	2.32	3.10(1)	154
$N1 - H1B \cdot \cdot \cdot O20^{i}$	0.85	1.98	2.83 (1)	175
$N1 - H1C \cdot \cdot \cdot O28^{iv}$	0.85	2.10	2.93 (1)	166
$N2-H2A\cdots O16^{i}$	0.85	2.28	2.93 (1)	134
$N2-H2B\cdots O11$	0.85	2.05	2.87 (1)	163
$N2-H2C\cdots O31^{v}$	0.85	2.20	3.00(1)	156
N3−H3A···O14	0.85	2.18	2.73 (1)	123
$N3-H3B\cdots O30^{vi}$	0.85	2.09	2.93 (1)	168
$N3-H3C\cdots O26^{vii}$	0.85	2.42	3.08 (1)	135
$N3-H3C \cdot \cdot \cdot O27^{vii}$	0.85	2.49	3.21 (1)	142
N4−H4A····O7 ^{vii}	0.85	2.12	2.86(1)	146
N4 $-$ H4 B ···O36 ^{vi}	0.85	2.43	3.01 (1)	126
$N4-H4C\cdots O18^{vii}$	0.85	2.05	2.85 (1)	156
$N5-H5A\cdots O19^{vii}$	0.85	2.09	2.90(1)	161
N5-H5 B ···O24 ^{vii}	0.85	2.38	2.93 (1)	123
N5−H5C···O8	0.85	2.45	2.86(1)	110
$N5-H5C\cdots O35^{viii}$	0.85	2.43	3.15(1)	142
$N5-H5C\cdots O34^{viii}$	0.85	2.44	3.21 (1)	151
N5−H5C···O8	0.85	2.45	2.86(1)	110
N6-H6A···O23	0.85	2.17	2.88 (1)	140
N6−H6B···O30	0.85	2.45	3.02 (1)	125
N6−H6C···O7	0.85	2.08	2.89(1)	158
$N7-H7A\cdots O32^{vi}$	0.85	2.31	2.90(1)	127
$N7-H7A\cdots O10^{ix}$	0.85	2.43	3.13 (1)	141
$N7 - H7B \cdot \cdot \cdot O3$	0.85	2.13	2.92 (1)	153
N7−H7C···O15	0.85	2.06	2.82 (1)	148
$N8-H8A\cdotsO18^{i}$	0.85	2.18	2.84 (1)	135
$N8-H8B\cdots O35^{iv}$	0.85	2.11	2.89(1)	152
$N8-H8C\cdots O2^{ix}$	0.85	2.15	2.99(1)	169
N9-H9 A ···O10 ^{vii}	0.85	2.18	2.84 (1)	135
$N9-H9B\cdots O32^{iv}$	0.85	2.02	2.81 (1)	154
N9−H9C···O3	0.85	2.25	2.95 (1)	140
N10-H10A···O27 ^{vii}	0.85	2.41	3.25 (1)	168
N10−H10B···O16	0.85	2.13	2.89(1)	148
N10-H10C···O24	0.85	2.53	3.37 (1)	167

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) -x, -y + 1, -z + 1; (iv) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) x + 1, y, z; (vi) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (vii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (viii) -x, -y, -z + 1; (ix) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$.

The ammonium and carbon-bound H atoms were treated as riding, with N-H = 0.85 Å and C-H = 0.97 Å, and were included in the refinement with $U_{iso}(H) = 1.2U_{eq}(N,C)$. The water H atoms were placed in chemically sensible positions on the basis of hydrogen bonds but they were not refined; their displacement parameters were similarly tied. One of the cations is disordered over two sites; the occupancies of the major and minor components were arbitrarily fixed at 0.5. For all cations, the C-N distances were restrained to 1.450 (5) Å and the C-C distances to 1.500 (5) Å. The anisotropic dispacement parameters of the C, N and O atoms were restrained to be nearly isotropic.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2006).

The authors thank the Natural Scientific Foundation Committee of Shanxi Province (grant No. 20041031) and the University of Malaya for generously supporting this study.

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2003). SAINT (Version 6.36a) and SMART (Version 6.36a). Bruker AXS Inc., Madison, Winsonsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Westrip, S. P. (2006). publCIF. In preparation.

Xu, Z.-W., Fu, Y.-L., Teng, S.-Q. & Ng, S. W. (2006). Acta Cryst. E62, m3420– m3422.